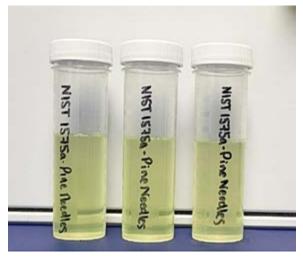
NIST 1575a - Trace Elements in Pine Needles

SUMMARY

The application note summarizes the digestion of NIST 1575a, a pine needles standard reference material using ColdBlock™ Digestion Pro Series Technology.


Instrument:	ColdBlock CBM (with quartz test tubes), chiller, ICP-MS			
Published:	July 2024			
Digestion Time:	20 Minutes			
Acid Used:	HNO ₃ & H ₂ O ₂			
Average ColdBlock Recovery vs. CRM:	99% Iron98% Phosphorus106% Mercury			

METHODOLOGY

- 1. Chiller temperature was set to -5°C
- 2. 0.5g of each sample was weighed and placed into a quartz ColdBlock™ Digestion vessel
- 3. 10 mL of HNO₃ was added
- 4. Sample was digested at 65% power for 20 minutes
- 5. $2mL \text{ of } \ge 30\% \text{ H}_2O_2$ was added slowly
- 6. Samples were cooled and bulked to 40mL using 2% HNO_{3 v/v}

DISCUSSION

- Samples were digested in triplicate
- Samples were filtered prior to analysis by ICP-MS
- NIST 1575a consists of dried, jet milled, radiation sterilized, blended pine needle

NIST 1575a after digestion and bulk up to 40mL

NIST 1575a - Trace Elements in Pine Needles

Results

NIST 1575a Trace Elements in Pine Needles											
Method:	0.5g	$10 \mathrm{mL}\mathrm{HNO_3}65\%$ power for 20 minutes, then slowly add $2 \mathrm{mL}\mathrm{of}30\%\mathrm{H_2O_2}$									
Element	Consensus Value (ppm)	+/-	Sample A	Sample B	Sample C	Average (ppm)	Stdev	RSD	Recovery		
Al	580	30	574	586	596	585	8.7	1.5%	101%		
Ва	6.0	0.2	5.3	5.9	6.2	5.8	0.4	6.6%	96%		
Ca	2500	100	2502	2383	2574	2486	78.6	3.2%	99%		
Cd	0.233	0.004	0.253	0.251	0.273	0.259	0.01	3.8%	111%		
Cu	2.8	0.2	3.2	3.1	3.0	3.1	0.1	2.6%	111%		
Fe	46	2	43	46	48	46	2.2	4.9%	99%		
К	4170	70	4059	4062	4111	4077	23.8	0.6%	98%		
Р	1070	80	1185	1128	1127	1147	27.1	2.4%	107%		
Rb	16.5	0.9	15.7	15.6	15.4	15.6	0.1	0.7%	94%		
Zn	38	2	37	37	39	37	0.9	2.4%	98%		
Hg	0.0399	0.0007	0.0421	0.0427	0.042	0.0424	0.0002	0.6%	106%		